Normal view MARC view ISBD view

In Vitro Activity Of Selected Biocides Against Fungal Isolates From Production Area Of Pharmaceutical Industry

By: Sana Ilyas (2009-VA-238) | Dr. Muhammad Nawaz.
Contributor(s): Prof. Dr. Aftab Ahmad Anjum | Dr. Muhammad Ovais Omer.
Material type: materialTypeLabelBookPublisher: 2016Description: 70p.Subject(s): MicrobiologyDDC classification: 2705-T Dissertation note: Pakistan pharmaceutical industries have grown to grab their position amongst top ten pharmaceutical industries of Asia Pacific region. These are serving with 80% of pharmaceutical needs. The industry on the other hand faces some challenges in terms of sterile pharmaceutical product manufacturing. The fungal contamination causes spoilage to pharmaceutical products, cosmetics, and food products. The fungal contamination to pharmaceutical products has resulted in direct losses to human health and to economy. A total of 50 air samples were collected from clean area of a pharmaceutical production unit by exposing sabouraud dextrose agar (SDA) plates by settle plate method (4 hours exposure). Fungal colonies were purified by sub-culturing and later identified macroscopically and microscopically. Selected biocides included isopropyl alcohol (70%), chloroxylenol (20%), chlorhexidine gluconate (20%), and benzalkonium chloride (20%) were used in this study. A 100 μl of spore suspension of each fungal contaminant (1.0 × 106 to 5.0 × 106 spores/mL) was exposed to 9.9 mL of biocide preparation for 15 and 30 minutes while exposure was stopped by adding 1 mL of mixture (spores exposed to biocide) into 9 mL of respective neutralizing agents The enumeration of colonies was started immediately after the growth was visible and expressed as Mean±S.D. and converted to log10. Antifungal activity of biocides was expressed as log10 reduction and different biocides‟ activity was compared using ANOVA technique by graphed prism 5.0 statistical software. Total 204 colony forming units (CFU) were identified from filling area (36), solution room (47), and buffers (121). The antifungal activity in terms of log reduction was lowest by isopropyl alcohol at 15 minutes and highest was shown by chlorohexidine gluconate at 30 minutes against Summary 64 Aspergillus flavus. In case of Aspergillus fumigatus all the biocides presented significant difference of antifungal activity at 15 minutes. The response of Aspergillus niger against different biocides at 15 minutes and 30 minutes was same as was in case of Aspergillus flavus while each biocide‟s antifungal activity was found significantly increased with increase in time of exposure. The similar response of antifungal activity of different biocides at both exposure times was noted against Saccharomyces cerevisiae. The antifungal activity of all biocides against penicillium was found significant different at 15 minutes and 30 minutes exposure time. Similarly, each biocide‟s antifungal activity increased with increase in time of exposure. On overall basis, isopropyl alcohol was found less effective while benzalkonium chloride and chlorohexidine gluconate presented comparatively higher efficacy against fungal isolates.
Tags from this library: No tags from this library for this title. Add tag(s)
Log in to add tags.
    average rating: 0.0 (0 votes)
Item type Current location Collection Call number Status Date due Barcode Item holds
Thesis Thesis UVAS Library
Thesis Section
Veterinary Science 2705-T (Browse shelf) Available 2705-T
Total holds: 0

Pakistan pharmaceutical industries have grown to grab their position amongst top ten pharmaceutical industries of Asia Pacific region. These are serving with 80% of pharmaceutical needs. The industry on the other hand faces some challenges in terms of sterile pharmaceutical product manufacturing. The fungal contamination causes spoilage to pharmaceutical products, cosmetics, and food products. The fungal contamination to pharmaceutical products has resulted in direct losses to human health and to economy.
A total of 50 air samples were collected from clean area of a pharmaceutical production unit by exposing sabouraud dextrose agar (SDA) plates by settle plate method (4 hours exposure). Fungal colonies were purified by sub-culturing and later identified macroscopically and microscopically. Selected biocides included isopropyl alcohol (70%), chloroxylenol (20%), chlorhexidine gluconate (20%), and benzalkonium chloride (20%) were used in this study. A 100 μl of spore suspension of each fungal contaminant (1.0 × 106 to 5.0 × 106 spores/mL) was exposed to 9.9 mL of biocide preparation for 15 and 30 minutes while exposure was stopped by adding 1 mL of mixture (spores exposed to biocide) into 9 mL of respective neutralizing agents The enumeration of colonies was started immediately after the growth was visible and expressed as Mean±S.D. and converted to log10. Antifungal activity of biocides was expressed as log10 reduction and different biocides‟ activity was compared using ANOVA technique by graphed prism 5.0 statistical software.
Total 204 colony forming units (CFU) were identified from filling area (36), solution room (47), and buffers (121). The antifungal activity in terms of log reduction was lowest by isopropyl alcohol at 15 minutes and highest was shown by chlorohexidine gluconate at 30 minutes against
Summary
64
Aspergillus flavus. In case of Aspergillus fumigatus all the biocides presented significant difference of antifungal activity at 15 minutes. The response of Aspergillus niger against different biocides at 15 minutes and 30 minutes was same as was in case of Aspergillus flavus while each biocide‟s antifungal activity was found significantly increased with increase in time of exposure. The similar response of antifungal activity of different biocides at both exposure times was noted against Saccharomyces cerevisiae. The antifungal activity of all biocides against penicillium was found significant different at 15 minutes and 30 minutes exposure time. Similarly, each biocide‟s antifungal activity increased with increase in time of exposure. On overall basis, isopropyl alcohol was found less effective while benzalkonium chloride and chlorohexidine gluconate presented comparatively higher efficacy against fungal isolates.

There are no comments for this item.

Log in to your account to post a comment.


Implemented and Maintained by UVAS Library.
For any Suggestions/Query Contact to library or Email:rehana.kousar@uvas.edu.pk Phone:+91 99239068
Website/OPAC best viewed in Mozilla Browser in 1366X768 Resolution.